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Abstract—Alzheimer’s disease (AD) is one major cause of 
dementia. Previous studies have indicated that the use of 
features derived from Positron Emission Tomography (PET) 
scans lead to more accurate and earlier diagnosis of AD, 
compared to the traditional approach used for determining 
dementia ratings, which uses a combination of clinical 
assessments such as memory tests. In this study, we compare 
Naïve Bayes (NB), a probabilistic learner, with variations of 
Support Vector Machines (SVMs), a geometric learner, for the 
automatic diagnosis of Alzheimer’s disease. 3D Stereotactic 
Surface Projection (3D-SSP) is utilized to extract features from 
PET scans. At the most detailed level, the dimensionality of the 
feature space is very high, resulting in 15964 features. Since 
classifier performance can degrade in the presence of a high 
number of features, we evaluate the benefits of a correlation-
based feature selection method to find a small number of 
highly relevant features. 
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I. INTRODUCTION 
Dementia is an umbrella term used to refer to the 

deterioration of cognitive functions, such as memory loss, 
speech impairment, disorientation and poor judgment. AD is 
one major cause of dementia. One promising source of 
information for the early diagnosis of AD is PET scans, 
which captures the brain’s current metabolic activity.  

Kloppel et al. [7] compared the accuracy of dementia 
diagnosis provided by radiologists to that of computer-based 
diagnostic methods and concluded that the accuracy of 
computerized diagnosis is equal to or better than that of 
radiologists.  Wen et al. [11] investigated the potential of 
parametric images derived from PET scans in order to 
discriminate among three categories; AD, Frontotemporal 
Dementia (FTD) and Normal. To cope with the high number 
of features, Principal Component Analysis (PCA) was 
adopted. Xia et al. [12] utilized genetic algorithm for the 
selection of those components. Minoshima et al. [8] 
pioneered the utility of 3D-SSP in AD diagnosis and 
extracted the metabolic activity scores based on the PET-
scans. In [10], Sadeghi et al. demonstrated the utility of 
decision trees in distinguishing AD from FTD. 

In our work, we mine the imagery data supplied by 
Alzheimer’s Disease Neuroimaging Initiative (ADNI). More 
specifically, 3D-PET scans of human brains compose our 
data collection; the goal is to discern the class label of an 

instance in regards to Clinical Dementia Ratings (CDRs).  
We provide an empirical comparison of two popular 
learning algorithms with different characteristics; NB and 
SVM. Moreover, we investigate a correlation-based 
technique for the dimensionality reduction. We also report 
some preliminary results regarding the impact of using a 
concept hierarchy, which is created according to a standard 
taxonomy of brain’s anatomical regions. 

The next section describes the data characteristics and 
preprocessing stages. Section III presents the feature 
selection method used. Section IV depicts the experimental 
methodology and Section V presents the results, while 
Section VI provides the conclusions. 

II. DATA AND PROCESSIING 
Table I describes the demographics of our data 

collection, which is composed of 394 PET scans. The 
images covered a period between October 25, 2005 and 
August 16, 2007. The metabolic activity of the cerebral 
cortex is extracted with respect to the 3D-SSP using a GE 
proprietary application known as Cortex ID. As a result, an 
ordered list of 15964 predefined points is obtained (Fig. 1). 
Each point (voxel) is assigned a z-score, which measures 
how many standard deviations the metabolic activity departs 
from a predefined control group [10]. 

Table II shows the clinical dementia ratings (CDRs) and 
the corresponding levels of dementia. Fig. 2 depicts the 
histogram of the data set with respect to CDR. No instance 
of CDR-3.0 is present in our collection. Our goal in 
classification is to agree with expert decisions since 
pathological confirmations of the CDRs are not present. 

TABLE I. DEMOGRAPHIC DATA OF SCANS 

Avg. 
Birth 
Year 

Gen. Ethnicity 

M F Hispanic/ 
Latino 

Not 
Hispanic 

Not 
Prov. 

1930 134 69 4 193 6 

TABLE II. LEVELS OF DEMENTIA (CLASS LABELS) 

Classes CDR Value Degree of Disease 
Class 1 0.0 Normal (Negative) 
Class 2 0.5 Questionable 
Class 3 1.0 Dementia 
Class 4 2.0 Severe Dementia 
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Figure 1. Cortex extracted via 3D-SSP 

 
Figure 2. Data distribution (101, 230, 60, 3, respectively) 

A. Region Taxonomy 
Voxels are grouped according to a taxonomy of 

anatomical regions, which conforms to the Talairach-
Tourneau atlas (Fig. 3 and Table III). This scheme enables 
us to compute averages by region. 

 
Figure 3.Taxonomy of cortical regions 

TABLE III. REGION MAPPING TABLE 

Region ID Anatomic Region 
0 Other 
1 Parietal Association Cortex 
2 Temporal Association Cortex 
3 Frontal Association Cortex 
4 Occipital Association Cortex 
5 Post Cingulate Cortex 
6 Anterior Cingulate Cortex 
7 Medial Frontal Cortex 
8 Medial Parietal Cortex 
9 Primary Sensorimotor Cortex 

10 Visual Cortex 
11 Caudate Nucleus 
12 Cerebellum 
13 Vermis 
14 Pons 

B. Averaging Strategies 
We apply a simple averaging filter to obtain the two 

higher-level representations of the voxel-level features. The 
number of features in higher-levels is dramatically smaller; 
the reduction is from 15964 to 30, representing the 15 
regions on left and right hemispheres, and then to 15 (Fig. 
4), due to the union of left and right hemispheres.  

Figure 4.Feature hierarchy 

III. CORRELATION-BASED FEATURE SELECTION 
CFS [3] is a filter-based subset evaluator. It dramatically 

reduces the number of features. At the core of the algorithm 
is the function, given by (1), which measures the quality of 
the subset. The assumption is the relevant features are 
highly correlated with the class label, and the inter-
correlation among these features is low.

Merits =
krcf

k + k(k −1)rff

,   (1) 

where Merits is the quality of the subset S with k features, rcf 
the average feature-class correlation of the k-features, and rff  
the selected features’ average feature-feature correlation.  

IV. EXPERIMENTAL METHODOLOGY 
In our benchmarks, we utilized NB and SVM on 3 

different feature levels. The voxel-level feature vectors 
belong to the lowest level (Fig. 4). In addition, another type 
of feature vector is also generated via a fusion approach, 
such that descriptors from the 3 levels are concatenated into 
a single feature vector. This is done to determine if the 
feature selection method would choose aggregated scores 
over the voxel-level ones. Experiments have been conducted 
using WEKA [4]. NB conforms to [6]. WEKA also supports 
LibSVM [1,2], which is used to create the SVMs. 

We conducted 3 different experiments. In each, Class 4 
(CDR-2.0) is disregarded since the dataset has only 3 such 
instances. The first one considers a 2-class problem in 
which normal patients are put against the demented ones. 
The second experiment studies a 3-class problem, which 
includes the category of CDR-0.5. In third experiment, the 
union of two classes of abnormality is tested against normal. 

V. EXPERIMENTAL RESULTS 
This section presents the results of 5x2CV tests, which 

are 5 iterations of 2-fold cross-validation. Results for each 
experiment are partitioned into two groups depending on 
whether dimensionality reduction is applied. The tables 
illustrate which method performs significantly better 
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(denoted by +) or worse (denoted by ~) than the method in 
first column. Our performance metric is classification 
accuracy and the results are averages of 10 classification 
tasks. Standard deviations are next to the corresponding 
entry. The observed differences are tested at the 5% 
significance level with respect to a paired two-sided t-test. 

A.  Normal vs. Dementia  
Table IV presents the baseline results for each learning 

scheme. The two SVM configurations are compared to NB. 
On first and second levels, classifier performances are 
generally equal; two exceptions are the RBF kernel SVM 
(Table IV) and linear kernel SVM (Table V), which 
perform, respectively, better and worse than NB at 
corresponding levels. Also notable is the classification 
performance for each classifier on the 3rd level is nearly 
identical to the classifier’s performance on the Fusion 
levels. If aggregated features are put against voxel-level 
features for the purposes of dimensionality reduction, voxel-
level features are generally the winners. Considering the 
fusion level vectors, the number of high-level features 
selected is negligible compared to the number of total 
features. Since we have a small data set with too many 
features, higher-level features may have been swamped out 
by the quantitative dominance of voxel-level features; 
however, to decide this issue we may need a larger data set. 
The last two rows of Table IV indicate that both SVMs 
induce better classifiers than NB on many features. In the 
literature, it has been indicated that linear SVMs are usually 
more robust compared to RBF SVMs when the number of 
features greatly outnumber the number of examples [5,9]; 
nevertheless, Tables IV and V show that both SVMs 
perform equally in the presence of many features. However, 
in Table IV, RBF kernel gains a significant lead (denoted by 
“^”) at the upper levels, potentially due to the decreasing 
ratio of feature counts over number of examples. 

TABLE IV. RESULTS WITHOUT FEATURE SELECTION 

Levels Naïve Bayes SVM with RBF 
Kernel 

SVM with Linear 
Kernel 

1st  82.11 (4.43) 84.97 (4.55) + 79.99 (3.22) ^ 
2nd  84.60 (2.98) 86.08 (5.78) 80.25 (4.72) ^ 
3rd  79.01 (5.19) 93.05 (3.89) + 92.18 (4.54) + 
Fusion  79.13 (5.06) 93.05 (3.89) + 92.18 (4.54) + 

TABLE V. RESULTS WITH FEATURE SELECTION 

Levels Naïve Bayes SVM with RBF 
Kernel 

SVM with Linear 
Kernel 

1st  81.48 (3.27) 82.60 (4.31) 80.86 (4.47) 
2nd  83.98 (3.96) 82.98 (5.41) 80.98 (4.72) ~ 
3rd  89.44 (2.99) 91.92 (2.95) + 92.29 (3.52) + 
Fusion  89.44 (2.99) 91.80 (3.06) + 92.17 (3.63) + 
 
NB assumes, given a class, features are uncorrelated. 

CFS provides NB classifier with a refined subset that is 
qualified for the assumption of independence. At the end, it 
gives rise to 10% boost in classification performance (Table 
V). For SVMs, while CFS does not significantly change the 

classification performance, it is beneficial, given the 
dramatic reduction of dimensionality (Table VI) at no 
significant compromise of accuracy (Table V).  

TABLE VI. EFFECT ON THE NUMBER OF FEATURES 

Levels Total # of features # of selected features 
1st  15 5.70 (1.16) 
2nd  30 9.90 (1.91) 
3rd  15964 137.20 (9.81) 
Fusion  16009 136.00 (10.85) 

B. Normal, Questionable and Dementia 
This classification problem is the hardest of the three 

described as multiple decision boundaries are required to 
partition the feature space into multiple decision regions; 
this results in an increased computational complexity.  In 
addition, the class of CDR-0.5 may present higher variance 
due to the non-uniform progression of AD. CDR-0.5 may be 
considered as a bridge between CDR-0 and CDR-1.0. Due 
to likely overlaps at two ends, the task of finding optimal 
decision surfaces is much harder. Comparing Table VII to 
Table IV, it is clear that overall performance is, expectedly, 
degraded. However, Table VII preserves the trend that RBF 
kernel SVM is the most accurate classifier throughout the 
hierarchy. It is also superior to linear kernel at 1st and 2nd 
levels. And NB is significantly worse than SVMs. 

Once CFS is employed, Table VIII drifts from the Table 
V. Even though NB is augmented by CFS, none of the 
SVMs are favored. Hence, the CFS may not be selecting 
features that the SVMs consider useful.  Table IX shows the 
average number of features selected at each level. 

TABLE VII. RESULTS WITHOUT FEATURE SELECTION 

Levels Naïve Bayes SVM with RBF 
Kernel 

SVM with Linear 
Kernel 

1st  59.54 (2.78) 65.52 (2.57) + 61.23 (2.54) 
2nd  57.34 (2.15) 66.70 (3.10) + 61.02 (2.88) + 
3rd  60.25 (2.34) 72.27 (2.83) + 71.87 (2.39) + 
Fusion  60.25 (2.25) 72.22 (2.85) + 71.87 (2.39) + 

TABLE VIII. RESULTS WITH FEATURE SELECTION 

Levels Naïve Bayes SVM with RBF 
Kernel 

SVM with Linear 
Kernel 

1st  59.28 (2.44) 59.59 (1.93) 59.95 (1.10) 
2nd  58.47 (2.10) 61.23 (3.09) + 59.44 (1.54) 
3rd  65.06 (1.93) 66.75 (2.21) + 64.96 (2.86) 
Fusion  64.96 (1.98) 66.24 (2.17) 65.37 (2.76) 

TABLE IX. EFFECT ON THE NUMBER OF FEATURES 

Levels Total # of features # of selected features 
1st  15 5.00 (1.41) 
2nd  30 8.90 (1.66) 
3rd  15964 146.80 (11.37) 
Fusion  16009 147.30 (11.17) 
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C. Normal vs. Abnormal  
In this 2-class problem, two categories of abnormality 

(CDR 1 and 0.5) are combined with the intent to discern 
normal instances from abnormal ones. Since the problem is 
defined on two classes and it includes the category of CDR-
0.5, its level of difficulty falls in between other two 
problems described earlier. Table X and Table XI show that 
overall classification performances, as expected, are better 
than the 3-class but worse than the normal versus dementia; 
yet, the general trend of SVMs dominating NB is preserved. 
SVMs, without feature selection, only differ at the 2nd level 
where the RBF kernel is significantly superior to linear 
kernel (Table X). CFS helps NB; however, once again, it 
hurts both SVMs. RBF kernel loses its advantage over linear 
SVM at the 2nd level; however, RBF kernel is more robust, 
when feature selection is employed, at lower levels (Table 
XI). Table XII shows the average number of features 
selected. 

TABLE X. RESULTS WITHOUT FEATURE SELECTION 

Levels Naïve Bayes SVM with RBF 
Kernel 

SVM with Linear 
Kernel 

1st  71.87 (2.73) 77.54 (3.72) + 76.83 (2.16) + 
2nd  70.33 (2.68) 78.92 (3.71) + 75.76 (2.00) + 
3rd  73.35 (4.37) 85.89 (2.85) + 85.32 (2.60) + 
Fusion  73.35 (4.39) 85.89 (2.85) + 85.32 (2.60) + 

TABLE XI. RESULTS WITH FEATURE SELECTION 

Levels Naïve Bayes SVM with RBF 
Kernel 

SVM with Linear 
Kernel 

1st  72.68 (3.25) 74.73 (1.53) 74.68 (1.07) 
2nd  72.17 (4.00) 75.91 (3.13) 75.40 (1.45) + 
3rd  76.57 (3.27) 80.46 (3.16) + 77.81 (4.70) 
Fusion 76.62 (3.03) 80.06 (3.10) + 77.75 (4.44) 

TABLE XII. EFFECT ON THE NUMBER OF FEATURES 

Levels Total # of features # of selected features 
1st  15 5.60 (1.26) 
2nd 30 9.10 (1.85) 
3rd  15964 172.00 (17.66) 
Fusion 16009 171.70 (17.41) 

VI. CONCLUSION 
This paper presents a comparison of a probabilistic 

learner, NB, and geometric learners, SVM, for the 
diagnostic purposes of AD. Earlier studies indicated that the 
use of features derived from PET scans lead to more 
accurate diagnosis of AD compared to the traditional 
approaches. In this study, 3D-SSP is utilized for feature 
extraction from PET scans; further, the benefits of utilizing 
a correlation-based feature selection method are assessed. 

Results show that the feature selection procedure is 
beneficial for both NB and SVM in the sense that it 
dramatically reduces the dimensionality. We further show 
that the improvement in classification accuracy obtained for 
NB is statistically significant. However, the feature selection 

technique leads to slightly lower performance accuracy for 
SVMs’ investigated; this may be due to the importance for 
SVM approach of retaining correlated features. Hence, we 
suggest that a SVM-oriented, rather than probabilistic, 
feature selection strategy be adopted. 

Utilization of taxonomy information for creating 
aggregation levels poses the exploratory aspect of our study. 
While the higher level features smooth out the underlying 
levels’ discriminative characteristics, we believe the idea of 
conceptual levels can be used to create a hierarchical feature 
selection method where the feature selection starts from the 
top and traverses the hierarchy in a top-down fashion.  
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